Concern about environment and climate change has increased interest in the fundamental importance of soil. Dr. DeAngelis describes the microbes that preserve soil health, the complex interdependence of these microbial ecosystems and the larger environment, and how healthy soil contributes to healthy climate.
Kristen DeAngelis is an Associate Professor at UMass Amherst. Because microbes embody the vast diversity of life and are major drivers of earth’s biogeochemical cycles, my work focuses on understanding microbes both from individual physiological perspectives as well as broad ecological perspectives. Specifically, I am interested in effects that climate change has on soil microbial communities, and applying results towards improvement of next generation biofuels. We aim to examine soil carbon dynamics, with focus on microbial carbon storage and greenhouse gas emissions in the rhizosphere and within the context of plant-microbial interactions. The microbial role in ecosystem function is difficult to define partly because microbial functions feed back at many scales. At the single cell scale, they sense and respond to their environments through two-component regulatory systems. At the population-level scale, there are myriad chemical inter- and intra-species communications that control group behaviors. At the community scale, composition changes with environmental factors, altering nutrient pools and process rates. My research program is intended to address this problem by addressing the following questions: How are microbial community structure and function related? What interactions with the environment or with other organisms control microbial activity? What can be gained or lost from examining natural versus controlled, laboratory systems?